Characterising the spatiotemporal profiles of neural object representations using
implicit and explicit similarity judgement tasks
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Abstract

Relating behavioural and brain data is essential for un-
derstanding how the brain identifies and distinguishes
individual objects. Prior work has shown that human
brain activity associated with perceived similarity is well
explained by explicit behavioural similarity judgements.
However the nature of such judgements cannot fully ex-
plain representational geometries observed in the visual
cortex. Here, we use a combination of behavioural tasks
in an attempt to identify behaviourally-relevant brain rep-
resentations across the visual ventral stream. We de-
rived behavioural representations from three tasks: an
explicit multi-arrangements task, a high-level semantic la-
belling task, and an implicit same-different task. We in-
vestigate the spatiotemporal neural profiles of these be-
havioural representations by comparing behavioural rep-
resentations with fMRI and EEG recordings using repre-
sentational similarity analysis (RSA). All three task rep-
resentations correlated highly with neural activity in an-
terior regions of the ventral stream at time points as-
sociated with late stage visual processing. Addition-
ally, the same-different task exhibited high correlations
propagating throughout the ventral stream in more pos-
terior regions, as well as at earlier time points. These
results highlight the importance of using implicit similar-
ity judgements to complement the neural information ex-
plained by higher-level, conscious similarity judgements.
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Introduction

Linking neural and behavioural activity is pivotal in under-
standing and replicating the neural mechanisms responsible
for visual stimulus recognition. Behavioural experiments in-
volving perceived similarity judgments have become increas-
ingly used in visual experiments, providing behavioural rep-
resentations which strongly associate with visual system ac-
tivity (Hebart et al., 2020; Waraich & Victor, 2022). Repre-
sentational similarity analysis (RSA) is an effective method to
identify commonalities between representations of neural and
behavioural activity. RSA utilises representational dissimilarity
matrices (RDM), symmetrical matrices describing the level of
dissimilarity between each pair of stimuli in a set (Kriegesko-
rte, Mur, & Bandettini, 2008). To compare RDMs between
brain and behaviour, behavioural similarity judgements must
be measured between all pairs of stimuli. When dealing with
a large number of stimulus conditions, the psychophysical ex-
periments used to measure similarity judgments must be ef-
ficient. The multiple arrangements (MA) task (Kriegeskorte &
Mur, 2012) has proven to be highly efficient when compared
with tasks of a similar nature (Giordano et al., 2011), collecting
multiple pairwise similarity judgements in a single trial. This
has proven invaluable in successfully relating different explicit
behavioural information about stimuli to representational ge-
ometries of brain activity patterns. (Bankson et al., 2018;

Charest et al., 2014; Cichy et al., 2019; Mur et al., 2013),
explaining ventral stream dynamics across both space and
time (Bankson et al., 2018; Cichy et al., 2019). Such exper-
iments rely on highly explicit similarity judgements, in which
conscious (and presumably high-level) decisions from partic-
ipants determine the outcome of the similarity space. Such
decisions presumably do not reflect representational geome-
tries across the whole visual cortex (King et al., 2019). Here,
we investigate how implicit and explicit similarity judgments
capture complementary components of brain-behaviour rela-
tions. To fully capture these processes, we collected data from
three tasks of varying levels of processing; an (implicit) same-
different task, an (explicit) MA task, and a semantic-level cap-
tioning task. We compare how information measured from
these tasks associates with the spatiotemporal unfolding of
object representations encoded in the ventral stream, by re-
lating it to both EEG (temporal) and fMRI (spatial) activity.

Methods

All stimulus conditions were identical to Charest et al. (2014).
In the MA task, subjects were instructed to organise stimuli in
a circular “arena” according to their similarity. The euclidean
distance between pairs of stimuli on the 2D plane were taken
as a dissimilarity metric. Next, implicit similarity judgements
were recorded using a same-different task. Two stimuli were
concurrently presented to the subject very briefly (17ms), fol-
lowed by a dynamic mask (200ms). Subjects were then asked
whether the two images displayed were different or identical.
The task responses and reaction times were then input to a
drift-diffusion model (Vandekerckhove et al., 2011), and the
drift rate used as an index of representational distance. The
third task required participants to describe a given stimulus in
a sentence. The sentences were then encoded in embedding
space using MPNet (Song et al., 2020), and the level of sim-
ilarity between sentences computed as the cosine distance
between their respective vectors. All three tasks yielded one
RDM per participant, characterising the pairwise dissimilari-
ties across all stimulus pairs.

The fMRI data (3T, n=20) used in this study was previously de-
scribed in Charest et al. (2014). GLMdenoise (Charest et al.,
2018; Kay et al., 2013) was used to provide voxel-wise beta
estimates, and a univariate noise normalisation (Misaki et al.,
2010). was used before computing the RDMs using correla-
tion distances (1 - Pearson r). Comparison with behavioural
RDMs was done in spherical searchlights (6mm diameter) that
covered the whole brain.

The EEG data (128 channel, n=20) was collected separately
from the behavioural and fMRI data. The stimuli described in
Charest et al. 2014 were presented in a one-back task, each
stimulus being displayed for 500 ms. Linear discriminant anal-
ysis (LDA) was performed on the EEG data from which cross-
validated (k-fold) decoding accuracy between stimulus pairs
was used as a distance metric, producing an RDM for each
time point between -500ms and 1500ms from image onset.
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Figure 1: Behavioral similarity judgment procedures. A) Multi-
ple Arrangements B) Same-Different Task.

Results

We revealed the spatio-temporal unfolding of task represen-
tations in the brain by computing the spearman r correlations
between task RDMs and i) searchlight-defined RDMs of fMRI
activity across the brain, as well as ii) EEG derived RDMs for
each point in time (figure 2; all significant correlation shown
are FDR-corrected at a significance level of p j 0.05). To iden-
tify regions and time profiles associated with high level object
features, we used a high level semantic labelling task which
showed high levels of correlation in the anterior regions of
the ventral pathway, with a peak correlation (r=0.41) in hu-
man inferior temporal cortex (hIT), whereas much lower levels
of correlation were observed in earlier ventral areas. Tempo-
ral correlations peaked at 164 ms after stimulus onset (peak
r=0.17), and gradually declined after. The results observed for
the semantic labelling task are consistent with previous stud-
ies linking abstract feature processing to late ventral stream
(Bankson et al., 2018; Doerig et al., 2022; Kriegeskorte, Mur,
Ruff, et al., 2008; Popham et al., 2021). Correlations from
the explicit MA task closely mirrored those observed in the
semantic labelling task both spatially and temporally, with a
peak spatial correlation (r=0.41) also in IT, and a peak tem-
poral correlation again at 164 ms from stimulus onset (peak
r=0.19). Finally, our implicit same-different task also revealed
high levels of correlation in hIT (r=0.48). However, the same-
different task also revealed similarities distributed across ear-
lier stages of the ventral stream (figure 2). Temporally, the
same-different task exhibited a similar pattern and level of
temporal correlation to the explicit tasks from 164 ms onwards,
with a sharp increase followed by a gradual decline. However,
the same-different task also exhibited higher levels of correla-
tion at times closer to stimulus onset, with a larger peak cor-
relation (r=0.29) occurring at 156 ms.
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Figure 2: Temporal (left) and Spatial (right) Spearman r values
(blue) and areas of significance (red) for A) Discriminability
Task B) Multiple Arrangements C) Semantic Labelling.

Discussion

This study compared how behavioural experiments designed
to capture explicit, implicit and high-level semantic similarity
judgments explain the spatio-temporal unfolding of object rep-
resentations in the visual ventral stream. Our results showed
that an implicit task, in which conscious decisions about simi-
larity are absent, is a strong behavioural predictor of the neural
representational geometry of the visual cortex in both space
and time. Compared with explicit similarity judgements, our
implicit task was able to explain representational geometries
along the visual ventral stream in more posterior as well as
in high-level anterior regions. While implicit judgments have
been used in the past (Hebart et al., 2020; Magri & Kon-
kle, 2019), the same-different task is not constrained by the
need to combine similarity judgments across many partici-
pants, allowing single-subject analyses. Indeed, this task has
been used previously to investigate idiosyncratic brain and
behavioural relationships (Charest et al., 2014), something
to which spatio-temporal characterisation could be extended.
Altogether, our results highlight how combining behavioural
experiments that capture complementary features underlying
similarity judgements can provide a more comprehensive spa-
tiotemporal map of neural object representations than either
could alone, and provide novel insights about behaviourally-
relevant brain representational similarities at different stages
of information processing along the visual ventral stream.
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